3.972 \(\int \frac{1}{x \sqrt{a+b x^2} \sqrt{c+d x^2}} \, dx\)

Optimal. Leaf size=46 \[ -\frac{\tanh ^{-1}\left (\frac{\sqrt{c} \sqrt{a+b x^2}}{\sqrt{a} \sqrt{c+d x^2}}\right )}{\sqrt{a} \sqrt{c}} \]

[Out]

-(ArcTanh[(Sqrt[c]*Sqrt[a + b*x^2])/(Sqrt[a]*Sqrt[c + d*x^2])]/(Sqrt[a]*Sqrt[c]))

________________________________________________________________________________________

Rubi [A]  time = 0.0468969, antiderivative size = 46, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 26, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.115, Rules used = {446, 93, 208} \[ -\frac{\tanh ^{-1}\left (\frac{\sqrt{c} \sqrt{a+b x^2}}{\sqrt{a} \sqrt{c+d x^2}}\right )}{\sqrt{a} \sqrt{c}} \]

Antiderivative was successfully verified.

[In]

Int[1/(x*Sqrt[a + b*x^2]*Sqrt[c + d*x^2]),x]

[Out]

-(ArcTanh[(Sqrt[c]*Sqrt[a + b*x^2])/(Sqrt[a]*Sqrt[c + d*x^2])]/(Sqrt[a]*Sqrt[c]))

Rule 446

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] &&
 NeQ[b*c - a*d, 0] && IntegerQ[Simplify[(m + 1)/n]]

Rule 93

Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_Symbol] :> With[{q = Denomin
ator[m]}, Dist[q, Subst[Int[x^(q*(m + 1) - 1)/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^
(1/q)], x]] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && LtQ[-1, m, 0] && SimplerQ[
a + b*x, c + d*x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{1}{x \sqrt{a+b x^2} \sqrt{c+d x^2}} \, dx &=\frac{1}{2} \operatorname{Subst}\left (\int \frac{1}{x \sqrt{a+b x} \sqrt{c+d x}} \, dx,x,x^2\right )\\ &=\operatorname{Subst}\left (\int \frac{1}{-a+c x^2} \, dx,x,\frac{\sqrt{a+b x^2}}{\sqrt{c+d x^2}}\right )\\ &=-\frac{\tanh ^{-1}\left (\frac{\sqrt{c} \sqrt{a+b x^2}}{\sqrt{a} \sqrt{c+d x^2}}\right )}{\sqrt{a} \sqrt{c}}\\ \end{align*}

Mathematica [A]  time = 0.0118912, size = 46, normalized size = 1. \[ -\frac{\tanh ^{-1}\left (\frac{\sqrt{c} \sqrt{a+b x^2}}{\sqrt{a} \sqrt{c+d x^2}}\right )}{\sqrt{a} \sqrt{c}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(x*Sqrt[a + b*x^2]*Sqrt[c + d*x^2]),x]

[Out]

-(ArcTanh[(Sqrt[c]*Sqrt[a + b*x^2])/(Sqrt[a]*Sqrt[c + d*x^2])]/(Sqrt[a]*Sqrt[c]))

________________________________________________________________________________________

Maple [B]  time = 0.019, size = 103, normalized size = 2.2 \begin{align*} -{\frac{1}{2}\ln \left ({\frac{1}{{x}^{2}} \left ( ad{x}^{2}+bc{x}^{2}+2\,\sqrt{ac}\sqrt{bd{x}^{4}+ad{x}^{2}+bc{x}^{2}+ac}+2\,ac \right ) } \right ) \sqrt{d{x}^{2}+c}\sqrt{b{x}^{2}+a}{\frac{1}{\sqrt{ac}}}{\frac{1}{\sqrt{bd{x}^{4}+ad{x}^{2}+bc{x}^{2}+ac}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x/(b*x^2+a)^(1/2)/(d*x^2+c)^(1/2),x)

[Out]

-1/2*ln((a*d*x^2+b*c*x^2+2*(a*c)^(1/2)*(b*d*x^4+a*d*x^2+b*c*x^2+a*c)^(1/2)+2*a*c)/x^2)*(d*x^2+c)^(1/2)*(b*x^2+
a)^(1/2)/(a*c)^(1/2)/(b*d*x^4+a*d*x^2+b*c*x^2+a*c)^(1/2)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(b*x^2+a)^(1/2)/(d*x^2+c)^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 2.25657, size = 455, normalized size = 9.89 \begin{align*} \left [\frac{\sqrt{a c} \log \left (\frac{{\left (b^{2} c^{2} + 6 \, a b c d + a^{2} d^{2}\right )} x^{4} + 8 \, a^{2} c^{2} + 8 \,{\left (a b c^{2} + a^{2} c d\right )} x^{2} - 4 \,{\left ({\left (b c + a d\right )} x^{2} + 2 \, a c\right )} \sqrt{b x^{2} + a} \sqrt{d x^{2} + c} \sqrt{a c}}{x^{4}}\right )}{4 \, a c}, \frac{\sqrt{-a c} \arctan \left (\frac{{\left ({\left (b c + a d\right )} x^{2} + 2 \, a c\right )} \sqrt{b x^{2} + a} \sqrt{d x^{2} + c} \sqrt{-a c}}{2 \,{\left (a b c d x^{4} + a^{2} c^{2} +{\left (a b c^{2} + a^{2} c d\right )} x^{2}\right )}}\right )}{2 \, a c}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(b*x^2+a)^(1/2)/(d*x^2+c)^(1/2),x, algorithm="fricas")

[Out]

[1/4*sqrt(a*c)*log(((b^2*c^2 + 6*a*b*c*d + a^2*d^2)*x^4 + 8*a^2*c^2 + 8*(a*b*c^2 + a^2*c*d)*x^2 - 4*((b*c + a*
d)*x^2 + 2*a*c)*sqrt(b*x^2 + a)*sqrt(d*x^2 + c)*sqrt(a*c))/x^4)/(a*c), 1/2*sqrt(-a*c)*arctan(1/2*((b*c + a*d)*
x^2 + 2*a*c)*sqrt(b*x^2 + a)*sqrt(d*x^2 + c)*sqrt(-a*c)/(a*b*c*d*x^4 + a^2*c^2 + (a*b*c^2 + a^2*c*d)*x^2))/(a*
c)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{x \sqrt{a + b x^{2}} \sqrt{c + d x^{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(b*x**2+a)**(1/2)/(d*x**2+c)**(1/2),x)

[Out]

Integral(1/(x*sqrt(a + b*x**2)*sqrt(c + d*x**2)), x)

________________________________________________________________________________________

Giac [B]  time = 1.21049, size = 120, normalized size = 2.61 \begin{align*} -\frac{\sqrt{b d} b \arctan \left (-\frac{b^{2} c + a b d -{\left (\sqrt{b x^{2} + a} \sqrt{b d} - \sqrt{b^{2} c +{\left (b x^{2} + a\right )} b d - a b d}\right )}^{2}}{2 \, \sqrt{-a b c d} b}\right )}{\sqrt{-a b c d}{\left | b \right |}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(b*x^2+a)^(1/2)/(d*x^2+c)^(1/2),x, algorithm="giac")

[Out]

-sqrt(b*d)*b*arctan(-1/2*(b^2*c + a*b*d - (sqrt(b*x^2 + a)*sqrt(b*d) - sqrt(b^2*c + (b*x^2 + a)*b*d - a*b*d))^
2)/(sqrt(-a*b*c*d)*b))/(sqrt(-a*b*c*d)*abs(b))